Всем здравствуйте. Опустим мои поздравления с новым учебным годом и пожелания успехов в учебе. Поступим так же, как поступили учителя 10-х классов: разберем сразу же самую сложную тему не только в 10 классе, но и вообще в школьной математике - более того, любимой всеми геометрии и, в частности, стереометрии. Будет все и сразу.
Изучив аксиомы стереометрии и следствия из них, попробуем построить сечение многогранника.
Итак задача, которую я взяла из 2 этапа репетиционного тестирования прошлого года. Дан куб. Построить сечение плоскостью, проходящей через точки M, N и C, где M - середина ребра A1B1, N - середина ребра AD.
В самом начале нужно обратиться к некоторым понятиям и разграничить четко: чем отличается понятие "грань многогранника" от понятия "плоскость, содержащая грань многогранника", а так же "сечение" от понятия "секущая плоскость".
Грань - это часть плоскости, ограничивающая многогранник, т.е. грань куба - это всегда квадрат, например, грань ABCD, в то время, как плоскость бесконечна и для ее задания достаточно назвать три буквы (обращаемся к первой аксиоме стереометрии). Плоскость, содержащая грань ABCD может быть задана любыми тремя точками, не лежащими на одной прямой, например, плоскость ABC или ACD.
Аналогично разграничим понятия "секущая плоскость" и "сечение".
Плоскость - бесконечна, а сечение - это n-угольник, полученный в результате пересечения секущей плоскости с гранями многогранника. Говоря более простым и понятным языком, сечение - это срез многогранника. Будто разрезать наш многогранник ножом и посмотреть, что получится на срезе. Поэтому для построения сечения необходимо найти прямые, по которым секущая плоскость пересекает плоскости, содержащие грани многогранника и взять отрезки, находящиеся в гранях, концы которых лежат на ребрах многогранника. (Выучите и разберитесь в понятиях ребро, грань и вершина многогранника).
1. Первое, с чем справляется большинство учеников - это найти точки, лежащие в одной плоскости - это точки C и N. Так как обе точки лежат в одной плоскости, то и вся прямая CN лежит в плоскости ABC. Соединяем их. Получаем, что секущая плоскость пересекает плоскость ABC по прямой NC. Тогда отрезок NC - сторона сечения, лежащая в грани ABCD.
И вот здесь многие ученики испытывают самое большое затруднение: а дальше что? Можно ли соединить точки M и N? НЕТ!!! Эти точки не лежат ни в одной из плоскостей, содержащих грань куба, поэтому прямая MN будет лежать в плоскости сечения, но не будет являться стороной сечения, соответственно никак не приблизит нас к решению поставленной задачи.
2. Задаем себе вопрос: в плоскости какой грани лежат прямые, содержащие стороны сечения? Отвечаем: прямая NC лежит в плоскости грани ABCD.
3. Вопрос: какие прямые, содержащие ребра многогранника пересекает эта прямая? Ответ: прямую AB, так как прямые AB и MN лежат в плоскости ABC. Они пересекаются в точке X.
4. Так как точка X принадлежит прямой AB, а прямая AB помимо плоскости ABC, содержится в плоскости ABB1, то точка X так же находится в плоскости ABB1. В плоскости ABB1 по условию. находится точка M, поэтому соединяем эти две точки, так как они лежат в одной грани. Однако, точка X не содержится в грани ABB1A1, так как выходит за ее границы. Поэтому нас интересует, какая точка будет ограничивать сечение в грани ABB1A1 - это точка пересечения прямой MX с ребром AA1 (они пересекаются, так как лежат в одной плоскости). Построили точку P.
5. Точки P и N лежат в грани ADD1A1, поэтому соединяем их и получаем сторону сечения NP.
6.Теперь мы снова вернулись к ситуации, когда не знаем как быть дальше, потому что точки M и C не лежат в одной грани, а значит, и соединять их нельзя. Возвращаемся к пункту 2 и задаем себе тот же вопрос: в плоскости какой грани лежат прямые, содержащие стороны сечения? Отвечаем: прямая PM лежит в плоскости грани ABB1A1.
7. Вопрос: какие прямые, содержащие ребра многогранника пересекает эта прямая? Ответ: прямую BB1, так как прямые PM и BB1 лежат в плоскости ABB1. Они пересекаются в точке Y.
8. Так как точка Y принадлежит прямой BB1, а прямая BB1 помимо плоскости ABB1, содержится в плоскости BCC1, то точка Y так же находится в плоскости BCC1. В плоскости BCC1 по условию. находится точка C, поэтому соединяем эти две точки, так как они лежат в одной грани. Однако, точка Y не содержится в грани BCC1B1, так как выходит за ее границы. Поэтому нас интересует, какая точка будет ограничивать сечение в грани BCC1B1 - это точка пересечения прямой CY с ребром B1C1 (они пересекаются, так как лежат в одной плоскости). Построили точку Q.
9. Соединяем точки M и Q, так как они находятся в плоскости сечения и обе лежат в грани A1B1C1D1.
10. Получили отрезки пересечения секущей плоскости с каждой из граней куба, значит построили искомое сечение NPMQC.
Кстати, в репетиционном тестировании был вопрос - какая фигура является сечением. И теперь очевидно, что правильный ответ - пятиугольник.