Страницы

среда, 24 января 2018 г.

В прямоугольном треугольнике ABC (угол C - прямой) проведена высота CH. Найдите площадь треугольника, если косинус угла А равен 7/25, а площадь треугольника ACH равна 9,8.

Способ 1.
Анализ. Идея состоит в том, чтобы ввести переменную, выразить через нее все стороны треугольника ACH, используя соотношения сторон в прямоугольном треугольнике, затем найти эту переменную, используя значение площади.
Далее вычислить оставшиеся элементы треугольника ABC и найти его площадь.

Решение.
Рассмотрим треугольник ACH:
Пусть AH = x, тогда:
По теореме Пифагора:
Исходя из формулы площади треугольника:
Находить x нет смысла, так как в задачи необходимо найти площадь треугольника, а это квадратная величина и неизвестная x будет присутствовать в расчетах также во второй степени. Выразим через х гипотенузу AB треугольника ABC, для этого воспользуемся формулой: 
Находим площадь треугольника ABC:
Ответ: 125


Способ 2
Анализ: идея состоит в том, чтобы найти взаимосвязь между формулами площадей треугольников.
Решение: 
Замечаем, что формулы отличаются одним элементом. Теперь необходимо выразить неизвестный нам элемент, гипотенузу AB через AH. Для этого воспользуемся определением косинуса в прямоугольном треугольники (отношение прилежащего катета к гипотенузе).
Из треугольника ACH:

Из треугольника ABC:

Выражаем AB через AH:

Находим площадь треугольника ABC.

Ответ: 125.

1 комментарий: